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Abstract
Using the decay of the out-of-equilibrium spin–spin correlation function we
compute the equilibrium Edward–Anderson order parameter in the three-
dimensional binary Ising spin glass in the spin glass phase. We have
checked that the Edward–Anderson order parameter computed from out-of-
equilibrium numerical simulations follows with good precision the critical law
as determined in experiments and in numerical studies at equilibrium (which
allow us to estimate the β critical exponent). Finally, we present a large time
study of the off-equilibrium fluctuation–dissipation relations and find strong
discrepancies (in the low-temperature region) between the numerical data and
the droplet theory predictions and agreement with the predictions of the replica
symmetry breaking theory.

PACS numbers: 05.70.Ln, 75.10.Nr, 75.40.Mg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The characterization, using numerical simulations, of the phase transition in the three-
dimensional Ising spin glasses has been a challenging problem. Recently, a clear picture
of the phase transition and good estimates of the critical exponents have been obtained for
both Gaussian and bimodal disorder by working at equilibrium [1–3].

However, a characterization of the phase transition using out-of-equilibrium techniques
is still lacking (see [4] for a detailed discussion). In the first part of this paper we will
address this problem (simulating the bimodal disorder). In particular, we will compute the
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order parameter using out-of-equilibrium techniques [5] and will characterize the transition
using this observable. In addition, we will confront our data with previous estimates of the
critical point and critical exponents for this model (obtained from numerical simulations and
experiments). The behaviour of this observable will permit us to discard (again) a Kosterlitz–
Thouless-like phase transition (as done in equilibrium [1], that we will refer in the following
as XY -like scenario) for the transition [4]. Moreover, we have studied the dependence of the
order parameter with the size of the system. Hence, we will present in this paper the first direct
numerical computation of the Edwards–Anderson order parameter in the three-dimensional
Ising spin glass (obtained out of equilibrium).

This kind of study was performed in the past in four dimensions [6] (see also [7, 8]) but
is still lacking in three dimensions (the interesting physical dimensions).

The second part of the paper is devoted to the study of the fluctuation–dissipation theorem
out of equilibrium. This kind of analysis has attracted a large amount of work (analytical,
numerical and experimental) in the last few years [9–14].

Using the results of [14] and assuming that the three-dimensional Ising spin glass presents
stochastic stability (until now it has not been rigorously proved but there are numerical
evidences [17]) one can relate the fluctuation–dissipation curves with equilibrium properties
and so, compute or measure the equilibrium probability distribution of the overlap. This
computation or measurement is very important since it should discern between the different
theoretical approaches in competition, which try to describe the behaviour of finite-dimensional
spin glasses (e.g. the replica symmetry breaking (RSB) approach [16, 17] or the droplet model
[18]).

The goal of this (last) part of the paper is twofold. First, to check if the order parameter
computed in the first part of this paper matches well in the fluctuation–dissipation (FD)
curves. This is important since this value marks the point in which the FD curve departs from
its pseudo-equilibrium regime, and the behaviour of the curve from this departing point is a
clear fingerprint whether or not the system behaves following the RSB theory or the droplet
model.

And the second goal is to study the finite time behaviour (for really large times) of the
curves in order to see how the asymptotic form of the FD curves is built up. This is important,
since until now, the numerical simulations [12] and experiments [15] show up behaviour
compatible with the replica symmetry breaking description and incompatible with droplet
theory. One can argue that the curves reported in the literature [12, 15] are not asymptotic and
that the asymptotic curve is compatible with droplet theory and no compatible with RSB.

Finally, we will draw the conclusions.

2. The model and numerical simulations

We have simulated a three-dimensional system in a cubic lattice with helicoidal boundary
conditions of size L and volume V = L3. The Hamiltonian is

H = −
∑
〈i,j〉

Jijσiσj , (1)

where 〈i, j 〉 denotes the sum over the first nearest neighbours, σi = ±1 are Ising variables and
Jij = ±1 are quenched random variables with a bimodal probability distribution with zero
mean and unit variance. We have used the standard heat-bath algorithm (local dynamics) to
simulate the three-dimensional lattice.
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We will introduce the observables measured in our work. Firstly, the order parameter (the
Edwards Anderson one) is defined as:

qEA = 〈σi〉2, (2)

where, as usual, we use 〈(· · ·)〉 and (· · ·) to denote thermal and quenched disorder average
respectively.

In addition, the spin–spin correlation function has been computed using

C(t, tw) = 1

V

V∑
i=1

σi(t)σi(tw). (3)

We can obtain formally the order parameter from this correlation as the double limit:

qEA = lim
t→∞ lim

tw→∞ C(t, tw). (4)

Note that the order of the limit is crucial in obtaining the order parameter. We will use this
equation to extract qEA from the out-of-equilibrium data.

We will study in the last part of the paper the finite time behaviour of the violation of the
fluctuation–dissipation relation in the three-dimensional spin glass. We will review shortly
the main equation of the off-equilibrium fluctuation–dissipation equations (see [19] for more
details):

R(t1, t2) = 1

T
X(C(t1, t2))

∂C(t1, t2)

∂t2
, (5)

where t1 > t2, R(t1, t2) is the response of the system to the magnetic field perturbation
(i.e. the magnetic susceptibility of the system: R(t1, t2) = m(t1, t2)/h) and X(C) is the,
in principle unknown, function which controls the violation of the fluctuation–dissipation
theorem. Integrating this equation in t2 and taking the perturbing field as h(t) = hθ(t − tw)

we finally obtain (working in the linear-response region):

m(t) � βh

∫ 1

C(t,tw)

duX(u). (6)

In the regime t1 � t2 � 1 we reach the equilibrium, and it is possible to show that
C(t1, t2) → q. In addition X(q) → x(q) ≡ ∫ q

qmin
dq ′ P(q ′), where x(q) is the integral of the

probability distribution of the overlap at equilibrium [16]. Hence, in this regime [9–14],

m(t) � βh

∫ 1

C(t,tw)

du x(u). (7)

Furthermore, we can define

S(C) ≡
∫ 1

C(t,tw)

dq x(q), (8)

so,

m(t)T

h
� S(C(t, tw)). (9)

Both, in droplet theory and RSB (see [21], in particular its figure 10), S(C) is the straight line
1 − C for C ∈ [qEA, 1]. However, for C < qEA the behaviour is very different: in the droplet
theory S(C) is constant in this region and in RSB S(C) is a growing function with curvature.
We recall that knowing the initial point, S(C = 0), we can compute qEA in the droplet
theory as

q
droplet
EA = 1 − S(C = 0). (10)
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This technique allows us to compute, taking the appropriate limit, the equilibrium
function x(q).

Finally, we report that all the numerical simulations have been obtained with the SUE
machine [22]. This is a dedicated machine, designed for the simulation of the three-
dimensional Edwards–Anderson model with first neighbour couplings [16], the system that
is being studied in the present work. It consists of 12 identical boards. Each single board
is able to simulate 8 different systems, updating all of them at each clock cycle. SUE
reaches an update speed of 217 ps spin with a clock frequency of 48 MHz. The on-board
reprogrammability permits us to change in an easy way the lattice size, or even the update
algorithm or the Hamiltonian. The SUE machine is connected to a Host Computer running
under Linux. SUE is in charge of the update of the configurations, and the host computer is in
charge of measurements and analysis. The main electronic devices of each SUE board are the
Altera family, that performs the update. Other devices store the spins and couplings variables.
One of the Alteras is devoted to generating random numbers in a fast way (for more details,
see [22]). Up to our knowledge, SUE has been the fastest dedicated machine in the simulation
of the three-dimensional Edwards–Anderson model.

3. Computation of the Edward–Anderson order parameter

In order to compute the Edward–Anderson order parameter (qEA), we have carried out
several runs for two lattice sizes and different temperatures: β = 1/T = 2.00, 1.67, 1.25,

1.05, 1.00, 0.95 and 0.91 for L = 30; and β = 2.00, 1.67, 1.25 and 1.00 for L = 60. For
all of them we have averaged over 58 samples. In figure 1 we report the curves C(t, tw) as a
function of time t.

We have checked that the behaviour of C(t, tw) for tw � 1 follows with high precision
the behaviour (as in higher dimensions, see [6, 7]; this is just an Ansatz):

C(t, tw) = a(t) + b(t)t−c(t)
w , (11)

where a(t) is related to the value of qEA. In order to find it out we have first obtained, from
figure 1 (top), the curves C(t, tw) versus tw for several fixed values of t (typically, from 8192
to ∼3.7 × 108 Monte Carlo steps) (see figure 1, bottom). We have fitted these curves to the
functional form defined in (11) obtaining in this way the behaviour of a(t) as a function of
t (we show these fits in figure 1). From a(t) and for t � 1, we can obtain the value of qEA

(since asymptotically a(t) must become qEA). To achieve this aim, we have fitted the last
points of a(t) versus t to a constant function (since a(t) shows a clear plateau, see figure 2).
In this way, we have implemented the double limit in equation (4). The results obtained from
these fits are shown in figure 3.

We have checked that for β > 1.00 the values for qEA are the same for both L = 30 and
L = 60. In β = 1.00 the difference is about 1.5 standard deviations. In addition, we have run
a L = 20 lattice at β = 0.91 and β = 1.00: these data show finite-size effects as expected
since they lie near the critical point (see figure 3).

4. Characterizing the phase transition

As we mentioned before, we have checked that the qEA, which we have computed out of
equilibrium, follows with good precision the critical law of the order parameter

qEA(β) = A(β − βc)
βq , (12)

where we have denoted by βq the usual β exponent of the order parameter (in order to avoid
confusion with the usual notation β = 1/T )
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Figure 1. Out-of-equilibrium spin–spin correlation function C(t, tw) computed for L = 60 and
β = 1.25. Top: C(t, tw) versus time, t. Bottom: C(t, tw) versus waiting time, tw , obtained by
studying the figure in the top for several fixed times t in order to find the limit tw → ∞ behaviour
of C(t, tw). The continuous lines in the plot are the fits to equation (11). Note that for the curves
with larger waiting time we have chosen to show not all the fits to (11) in order to present a clean
figure (the quality of the fits is the same for all the waiting times).

By fitting only the points closer to the critical one (satisfying β < 1.25) we obtain

βc = 0.866(2), βq = 0.52(9), (13)

with a χ2/d.o.f = 1.13. These figures compare really well with the numerical values obtained
at equilibrium [1], namely: βc = 0.88(1) and βq = 0.71(5). In particular the difference
between the two estimates of βq is 0.19(11), less than two standard deviations4,5.

In addition, we can compare with experiments. In [23] was found βq = 0.54(10) 6 which
is in a very good agreement with our out-of-equilibrium value.

We have also checked that qEA follows with good precision the critical law

(qEA(β))1/βq = A(β − βc). (14)

Again, we have only used in the fit the points with β < 1.25 (critical region). Moreover we
can fix βq to the experimental value, obtaining again a compatible value with the equilibrium
one: βc = 0.8603(6)(236), where the first error is statistical and the second error comes from

4 Note that in [1] corrections to scaling were taken into account. In our estimate there is no scaling correction, hence
our error is smaller than the error quoted in [1]: i.e. our error bars are underestimated.
5 See also [24] for a non-universality scenario: they reported βc = 0.84(1).
6 Note that both results in [1, 23] come from different methods.
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two plots. In addition, we have drawn the function a(t) with only 16 samples in order to show the
dependence of the extrapolated value (i.e. the plateau) on the number of samples.
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Figure 3. q
dyn
EA versus β for three lattices sizes L = 20, 30 and 60. The continuous line is the fit

reported in the text.

the error of the experimental βq . In addition, by fixing βq to the numerical simulations value
we obtain βc = 0.820(3)(13), less than three standard deviations from the numerical value.

All figures reported in this analysis are compatible with latest estimates of the critical
exponents. In [2] βc = 0.893(3) and βq = 0.723(25) were reported. In addition, a diluted
version of this model was studied in [3] and βq = 0.723(50) was reported.

Finally, we remark that our numerical results from both βc and βq must suffer from the
systematic error coming from the dependence of qEA with L near the critical point (as shown
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the L = 20 runs). At β = 1.00 we have three different values of the order parameter that fit
to the law

qEA(L) = qEA(∞) +
b

Lc
,

where b and c are constants. This is the finite volume correction equation which holds in
the low-temperature phase7. We have obtained c = 3.54 and qEA(∞) = 0.49 (note that we
are fitting three points to a three-parameter function) to be compared with qEA(L = 60) =
0.485(6) and qEA(L = 30) = 0.47(1). At β = 0.91 (the nearest value we have to the
critical point) we have only two points, that anyhow, we can try to fit to equation (4) fixing
c = 3.54, obtaining qEA(∞) = 0.278 (no error bars can be reported since, again, the number
of degrees of freedom in this fit is zero) to be compared with the value of our largest lattice
qEA(L = 60) = 0.26(1), so this limited analysis suggests that the L = 30 lattice is asymptotic
in its error bars in the region β � 0.91. Hence, we are confident that our final estimates of βc

and βq should have small systematic error coming from finite-size effects.
We remark that testing the dependence of qEA with the lattice size, for large lattices (e.g.

L = 60) near the transition is not accessible even using the SUE machine.

5. Finite time effects in the fluctuation–dissipation relations

We have performed several runs again with the SUE machine, in a lattice of size L = 60
for different temperatures: β = 1.25, 1.10, 1.05, 1.00 and 0.95. We have used the following
standard procedure. We let the system evolve during a time tw, just after this time, a field
h = 0.03 is plugged, seeing the response of the system and recording the magnetization and
the correlation function. Then it is possible to extract the value of qEA, for the particular β

being analysed at that moment, from the point where the curve leaves the linear regime, that
is, where mT/h does not follow the pseudo-equilibrium line (1 − C)/T .

The choice of the field strength applied to the system has not been arbitrary. We need
to stay in the linear-response region. We have checked this by simulating different magnetic
fields: h = 0.01, 0.03, 0.05 and 0.10. Finally we have selected a safe value for h: h = 0.03,
which is a compromise between large and small fields (note that small fields induce strong
noise in the measures). In figure 4 we have shown the FDT curve for a waiting time and two
perturbing magnetic fields (h = 0.01 and 0.003) in order to test that we are in the region in
which linear response holds. It is clear from this figure that the curve, inside the error bars, is
independent of the perturbing magnetic field.

In the droplet model, the curve X(C) departs horizontally from the straight line 1 − C,
the final value of the horizontal line being masynT/h (i.e. S(C = 0)), where masyn is the
equilibrium value of the magnetization in a field h at the temperature T. Hence, measuring
masyn we can obtain the droplet theory estimate for the order parameter as:

q
droplet
EA = 1 − masynT

h
. (15)

We will show in this section plots corresponding to β = 1.25 and L = 60. In order
to obtain numerically masyn we have performed a very large in-field numerical simulation
recording the value of the magnetization at the time t: m(t). The asymptotic value is

7 In [20] it was checked that in the three-dimensional Gaussian Ising spin glass the position of the maximum of
the equilibrium probability distribution of the overlap follows this law with c = 1.5(4) by fitting L � 16. Note
that in our case we are using 20 � L � 60 data and simulate the ±J model and that the c exponent could depend
on the temperature. Note that usually in equilibrium small lattices develop larger order parameter; however, in our
dynamical approach we have found the opposite behaviour.
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Figure 4. Fluctuation–dissipation curve out of equilibrium for one of the lowest temperatures
simulated β = 1.25, L = 60 and one waiting time for two different perturbing magnetic fields,
h = 0.01 and 0.03, in order to check linear response.

Table 1. qEA(β) for L = 60 from C(t, tw) (obtained in the first part of the paper) and assuming
droplet theory from mT/h. All the data showed in this table were obtained in a L = 60 lattice
except for dynamical qEA at β = 0.95 that was obtained simulating a L = 30 lattice.

β q
dyn
EA (β) q

droplet
EA

1.25 0.6583(34) 0.5573(13)
1.00 0.5071(31) 0.3957(17)
0.95 0.3554(7) 0.3404(21)

simply masyn = m(∞) (this observable shows really small dependence on L for the lattice
sizes simulated in this paper). To avoid extrapolations we have continued the run until the
magnetization shows a plateau (this means that the magnetization has reached its equilibrium
value), and so we extract the value of masyn by computing the position of this plateau. For
instance, we show in figure 5 the magnetization as a function of time for β = 1.25 and
L = 60.

By computing the asymptotic value of the magnetization for different temperatures, we
obtain a reliable estimate for the order parameter in the droplet theory. In table 1 we report
these values for the droplet theory estimates and, in addition, we write the values for the order
parameter obtained in the first part of this paper, which we will denote in the rest of the paper
as q

dyn
EA (β).
We recall that the values of q

dyn
EA (β) reported in table 1 have small finite-size effects

(taking into account their error bars) as checked in figure 3. Moreover, we have found strong
discrepancies between q

dyn
EA (β) and q

droplet
EA for small temperatures.

We will describe in the rest of the paper our results for the violation of FDT out of
equilibrium.

In figure 6 we report the FD data out of equilibrium for one of the lowest temperatures
simulated. We have shown a vertical band which marks our estimate of q

dyn
EA , a straight line
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Figure 6. Fluctuation–dissipation curve out of equilibrium for one of the lowest temperatures
simulated β = 1.25, L = 60 and three waiting times. We have marked using three vertical lines
the interval in which lies q

dyn
EA for this β computed in the first part of the paper. In addition, we

have marked with three horizontal lines the value and the statistical error for masynT/h. Finally,
we have marked a vertical line with the droplet theory prediction for qEA (the left part of the plot).
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Figure 7. Magnification of figure 6 showing up the region in which the FD curves depart from
the straight line 1 − C. We have marked using three vertical lines the interval in which lies q
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EA

computed in the first part of the paper.

1 − C to monitor the departure of this linear behaviour and a horizontal band which marks
masynT/h (see figure 5). In addition, we have plotted data from three different waiting times.

Figure 6 shows that our estimate for q
dyn
EA matches very well in the plot and marks the

region in which the FD data start to depart from the linear behaviour (for all the temperatures
simulated). In figure 7 we have drawn a magnification of this region. In addition, in this
figure one can see that the finite time effects in the building of the asymptotic curve are small.
Practically, the two biggest waiting times are compatible in the error (there is a factor 10 in
waiting time). With the current dedicated computers it is impossible to simulate larger waiting
times. We can conclude from this figure that we are unable to see dependence in waiting time
for the two largest waiting times in the region in which they depart from the linear behaviour.
The dependence on the waiting time for larger times is smaller than our statistical errors.
From our numerical data a droplet theory fluctuation–dissipation asymptotic curve seems
unlikely.

6. Conclusions

We have studied numerically and out of equilibrium the three- dimensional Ising spin glass
with bimodal disorder.

By computing the off equilibrium spin–spin correlation function we have been able to
extract the order parameter of the phase transition. The study of the behaviour of this order
parameter with temperature permits us to compute the critical temperature and the associated
critical exponent: both figures compare very well with the previous numerical simulations
and experiments. We have also discarded a XY -like scenario (we have found a non-vanishing
order parameter in the low-temperature region). We have also monitored the dependence of
qEA(β) with the lattice size in the low-temperature region for one β.

In the second part of the paper we have extracted the droplet prediction for the order
parameter by computing the asymptotic value of the susceptibility (mT/h). The droplet
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prediction compares (for all the β’s simulated) well with the order parameter computed in the
first part of the paper for high temperature (of course, slightly below the critical temperature),
but for lower temperatures the comparison is bad.

Moreover, the analysis (for larger waiting times) of the FD curves shows behaviour that
can be described in the RSB theory and points out that the droplet scenario seems unlikely
(only a really small dependence on waiting time, outside the precision of this work, could
build a final FD curve compatible with the droplet theory). Moreover the point at which the
numerical data depart from the linear behaviour compares well with the estimate obtaining in
the first part of this paper, supporting the RSB scenario.
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